COURSE SYLLABUS: CH3520, PHYSICAL CHEMISTRY II
SPRING, 2009

INSTRUCTOR: Prof. Bahne C. Cornilsen
Phone: 487-2295
Email: bccornil@mtu.edu
Office Hours: by Appointment (arrange via email)

Physical Chemistry, CH3520, covers the fundamental theories and experiments that underlie modern chemistry, in particular modern spectroscopy and structural analyses. A major part of this course is the development of problem solving skills. This chemistry and these problem solving skills underlie all science and engineering disciplines. A large component of this course is problem oriented, beginning in your pre-lecture reading of your text (with worked examples) and the assigned homework problems. The interplay of experiment and theory is emphasized. Lecture will guide you through the important material, help with difficult concepts, and apply principles in the problems solved. Your problem solving skills are further exercised and perfected as you work the assigned, end-of-chapter problems. Finally, these skills are tested on the quizzes, the mid-term exams and the final exam.

COURSE OUTLINE:

1. Quantum Mechanics (Chapters 8-9) HWP*:
a. The failures of classical mechanics (8.1)
b. Wave-particle duality (8.2)
c. The Schrödinger equation and Born interpretation (8.3-8.4)
d. Wavefunctions and the uncertainty principle (8.5-8.6)
e. Operators and the postulates of quantum mechanics (8.7)
f. The particle in a box, degeneracy, and tunneling (9.1-9.3)
g. Vibrational motion: the harmonic oscillator (9.4-9.5)
h. Rotational motion: the rigid rotor and spin (9.6-9.8)
i. Perturbation theory and variational theory, approximation methods (9.9-9.10)

2. Atoms (Chapter 10) HWP*:
a. The quantum mechanical solution for the hydrogen atom
b. Angular momentum and electron spin
c. The helium atom
d. Pauli exclusion principle, antisymmetry of electrons
e. The total orbital and spin angular momentum in atoms
f. Many electron atoms: their wave functions and electronic states
g. The Hartree-Fock method
h. The configuration-interaction method

* HWP = home work problems will be assigned in class.
3. Molecular Structure (Chapter 11) HWP*:
 a. Characteristic geometries and properties of polyatomic molecules
 b. The Hamiltonian for diatomic molecules; the Born-Oppenheimer approx.
 c. The vibration and rotation of diatomic molecules
 d. The H_2^+ molecule and molecular orbitals
 e. The H_2 molecule
 f. Molecular orbital method for diatomic molecules
 g. Hybrid orbitals
 h. Molecular orbital structure of simple polyatomic molecules
 i. The valence bond method
 j. The theoretical prediction of molecular properties
 k. Advanced quantum methods: the HF, CI, MP, CC and DFT methods.
 l. Semi-empirical and force field methods

4. Molecular Spectroscopy (Chapters 12-13) HWP*:
 a. The nature of electromagnetic radiation
 b. The Beer-Lambert law and selection rules
 c. Rotational and vibrational spectra of diatomic molecules
 d. Group theory (12 & Hand-outs)
 e. Rotational and vibrational spectra of polyatomic molecules
 f. Prediction and calculation of IR and Raman spectra (see Hand-outs)
 g. UV-visible spectroscopy of electronic states

5. Statistical Thermodynamics (Chapter 16-17) HWP*:
 a. Thermodynamic probability
 b. The Maxwell-Boltzmann distribution
 c. The partition function
 d. The statistical mechanical determination of energy, enthalpy, entropy, free
 energies and heat capacities
 e. Translational, vibrational, rotational and electronic contributions
 f. The direct summation method

GRADING:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour Exam I</td>
<td>100</td>
</tr>
<tr>
<td>Hour Exam II</td>
<td>100</td>
</tr>
<tr>
<td>Quizzes</td>
<td>50</td>
</tr>
<tr>
<td>Extra Credit</td>
<td>variable</td>
</tr>
<tr>
<td>Final Exam</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td>450</td>
</tr>
</tbody>
</table>

Evening Exams: On exam weeks, there will be class the day of the exam, but no class on Friday after the exam.

Extra-credit problems may be assigned (e.g. Harmonic Oscillator Calculation). Practice homework problems (HWP) from the textbook will be assigned in class. Although these will not be collected or graded, it is recommended that you solve these to test your understanding of the material and to gain experience with the kind of problems that will be on the exams.
CH3520 SYLLABUS: Grading (continued)

There is no predefined scale for the grades on exams. After each exam, the grade breaks will be defined. Re-grades for any exam must be requested within one week after the return of the exam. All students will be required to take the final exam.

EXAM POLICIES

Preparing for the Exam

NO MAKE-UPS for missed exams. Plan on taking the exam at the assigned times. If you have a valid reason to be absent from an exam (for a field trip, job interview, athletic event, etc.), notify the instructor prior to the exam. If an unanticipated problem makes it impossible to attend an exam, notify the instructor as soon as possible. An extended delay will be considered to be an unexcused absence. An unexcused absence will be an automatic zero for that exam. Excused absences result in the average of your other midterm exams being awarded for the missed exam.

Excused/Unexcused Absences:

- Granted by the Office of Student Affairs. If you know that you will have an official university excused absence on exam day (university athletic event or religious holiday), you are required to make arrangements as early as possible in advance of the exam date. You should see the Office of Student Affairs to document and verify excused absences.
- Examples of excused absences granted in the past include serious illness (medical excuse required) or a death in the family.
- Examples that are NOT excused: travel home or to attend a social event.

Taking the Exam:

- One 3x5 equation card (two 3x5 equation cards for the Final exam).
- Come on-time and seat yourself promptly in proper test seating arrangement.
- Bring only allowed items. Do NOT bring cell phones, CD players, iPods, earphones, or other electronic devices.

After Exam – Tracking Your Score

- Exam Scores (individual and cumulative) will be posted on Blackboard.
- Answer Keys will be provided after each exam.

ACADEMIC DISHONESTY

Academic integrity is expected. Any violations will result in a 0 for the course and a recommendation of expulsion from MTU. Policies and procedures are in “Academic Integrity at MTU – A Guide for Students and Faculty.” Specific violations include: copying from another’s work or exam, allowing copying from your work or an exam, or facilitation of any academic dishonesty.
CH3520 SYLLABUS (continued)

MTU ADA Statement
MTU complies with all federal and state laws and regulations regarding discrimination, including the Americans with Disabilities Act of 1990 (ADA). If you have a disability and need a reasonable accommodation for equal access to education or services at MTU, please call Dr. Gloria Melton, Dean of Students, at 7-2212. For other concerns about discrimination, you may contact your advisor, department head/chair, or the Affirmative Action Office.

Blackboard Information
The Blackboard (WebCT) site for CH3520 can be accessed at http://courses.mtu.edu/. Click on “MTU ISO Log In.” Enter your MTU Login ID and your MTU ISO password. In the list of courses for which you are enrolled, click on CH3520.

Within Blackboard there is a copy of this Syllabus and a course Grade Book where you may track your grades. Periodically examine this grade book for accuracy. Please report any discrepancies to me.