Instructor Information

Instructor: Ashutosh Tiwari, PhD, Assistant Professor
Office Location: 402B ChemSci
Telephone: Office – (906) 487-1840
E-mail: tiwari@mtu.edu
Office Hours: MW 2:00pm to 3:00pm and by appointment
Web site http://www.chemistry.mtu.edu/pages/faculty/faculty.php?fac=tiwari

Course Identification

Course Number: CH3540
Course Name: Biophysical Chemistry
Course Location: 104A Chem Sci
Class Times: MWF 12:05pm to 12:55pm
Prerequisites: (BL 1020 or BL 1040) and CH 1120 or CH 1122 or (CH 1160 and CH 1161) and MA 2160 and PH 2200

Course Description/Overview

The goal of this course is to examine fundamental physical principles underlying complex biological systems in order to understand the interactions and behaviors found in biological, biochemical, and physical systems. Topics include macromolecules in aqueous environments, spectroscopy and structure determination, kinetics, membranes, and transport phenomena.

Course Learning Objectives

After completing the course, the students should be able to do the following.

1. Should have broad knowledge and understanding about the physical principles underlying biological phenomena.
2. Have understanding of how solution dynamics, thermodynamics, kinetics, and spectroscopy can be applied to biological problems.
3. Have understanding of proteins, its role in cells and its function at molecular level.
4. Have ability to identify and formulate strategies to characterize biochemical and biophysical properties of macromolecules such as DNA and proteins.
Course Resources

Course Website(s)

Syllabus and sample exams can be found at ---
http://www.chemistry.mtu.edu/pages/courses/class.php?class=CH3540§ion=0A&sem=20102

Please logon to the **Blackboard Learning System for copy of lectures**. Lectures will be visible only for a short period of time, so please keep checking back regularly.

Required Course Text

BOOK: *Biophysical Chemistry* by James P. Allen.
Publisher: Wiley-Blackwell; **ISBN:** 978-1-4051-2436-2

Other additional readings as required.

Grading Scheme

Grading System

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Percentage</th>
<th>Grade points/credit</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93% & above</td>
<td>4.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>AB</td>
<td>88% – 92%</td>
<td>3.50</td>
<td>Very good</td>
</tr>
<tr>
<td>B</td>
<td>82% – 86%</td>
<td>3.00</td>
<td>Good</td>
</tr>
<tr>
<td>BC</td>
<td>76% – 81%</td>
<td>2.50</td>
<td>Above average</td>
</tr>
<tr>
<td>C</td>
<td>70% – 75%</td>
<td>2.00</td>
<td>Average</td>
</tr>
<tr>
<td>CD</td>
<td>65% – 69%</td>
<td>1.50</td>
<td>Below average</td>
</tr>
<tr>
<td>D</td>
<td>60% - 64%</td>
<td>1.00</td>
<td>Inferior</td>
</tr>
<tr>
<td>F</td>
<td>59% and below</td>
<td>0.00</td>
<td>Failure</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete; given only when a student is unable to complete a segment of the course because of circumstances beyond the student’s control. A grade of incomplete may be given only when approved in writing by the department chair or school dean.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Conditional, with no grade points per credit; given only when the student is at fault in failing to complete a minor segment of a course, but in the judgment of the instructor does not need to repeat the course. It must be made up within the next semester in residence or the grade becomes a failure (F). A (X) grade is computed into the grade point average as a (F) grade.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grading Policy

Grades will be based on the following:
<table>
<thead>
<tr>
<th>Homework/assignment</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (4 exams x 15% each)</td>
<td>60</td>
</tr>
<tr>
<td>Quizzes</td>
<td>15</td>
</tr>
<tr>
<td>Class attendance/participation</td>
<td>5</td>
</tr>
<tr>
<td>Total Percent</td>
<td>100</td>
</tr>
</tbody>
</table>

Late Assignments

Any assignment which is delayed more than 1 day will have 10% marks cut; up to 3 days 20% marks cut. Any assignment late by one week or more will not be used for grading.

Course Policies

Active class participation is required e.g. asking and answering questions, presenting thoughts/ideas relevant to the topic of the day. For homework/assignment individual study is encouraged.

Attendance at all of the class session is mandatory unless you are sick. You are responsible for announcements made in class.

Collaboration/Plagiarism Rules

While collaboration is encouraged students should not copy work from each other and should read and follow the academic policies and procedures as governed by the University (see below).

University Policies

Academic regulations and procedures are governed by University policy. Academic dishonesty cases will be handled in accordance the University’s policies.

If you have a disability that could affect your performance in this class or that requires an accommodation under the Americans with Disabilities Act, please see me as soon as possible so that we can make appropriate arrangements. The Affirmative Action Office has asked that you be made aware of the following:

Michigan Tech complies with all federal and state laws and regulations regarding discrimination, including the Americans with Disabilities Act of 1990. If you have a disability and need a reasonable accommodation for equal access to education or services at Michigan Tech, please call the Dean of Students Office, at 487-2212. For other concerns about discrimination, you may contact your advisor, department head or the Affirmative Action Office, at 487-3310

Academic Integrity: http://www.studentaffairs.mtu.edu/dean/judicial/policies/academic_integrity.html

Affirmative Action:
http://www.admin.mtu.edu/aa/
Disability Services: http://www.admin.mtu.edu/urel/studenthandbook/student_services.html#disability

Course Schedule

Homework: Assignments will be due on Monday before the class starting week 2.

Quizzes: Short quizzes will be given in class.

Exam Schedule:

Exam 1: February 1, 2010
Exam 2: March 1, 2010
Exam 3: April 5, 2010
Exam 4: During the week of April 26, 2010

Course Outline

Note: The exact order in which topics are covered may be different than presented below.

Quantum Mechanics and spectroscopy:

Thermodynamics and kinetics:

Understanding biological systems using physical chemistry: